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Abstract—This paper describes the application of known also assume that the functioh, which generates the
and novel prognostic algorithms on systems that can be de- gbserved output of the system is unknown. We assume

scribed by low dimensional, potentially nonlinear dynamics. that the vectorx is an N dimensional state vector
The methods rely on estimating the conditional probability d x* is its hist for the lastD fi t !
distribution of the output of the system at a future time and x; , IS Its history for the las Ime steps.

given knowledge of the current state of the system. We X;—1 = [X¢—D,X¢—D+1,--,X¢—1]. The quantityu; is
show how to estimate these conditional probabilities using the observed system input, apdis the observed scalar

a variety of techniques, including bagged neural networks system output. We assume that the entire data that is

and kernel methods such as Gaussian Process Regressio ; ; ; e A
(GPR). The results are compared with standard method r?hvea”saett,tl” (3?)\/ ering both inputs and outputs is given by

such as the nearest neighbor algorithm. We demonstrate ; .
the algorithms on a real-world data set and a simulated ~ The hidden stateh; is assumed to correspond to

data set. The real-world data set consists of the intensity of different mode configurations within the system. In the
an N Hjs laser. The laser data set has been shown by other case where we assume that the hidden state takes on
authors to exhibit low-dimensional chaos with sudden drops  jiscrete valuesh, switches betweerl/ modes, each

in intensity. The simulated data set is generated from the . . .
Lorenz attractor and has known statistical characteristics. affecting the output dynamicg. In the case of a failure

On these data sets, we show the evolution of the estimatedOf the systemh; could move to a failed state, thus also
conditional probability distribution, the way it can actas a  changing the nature of the observed output. In other
prognostic signal, and its use as an early warning system. gpplications,h, could be a continuous state variable,
We also review a novel approach to perform Gaussian mdeling a slow progression of the system from a normal
Process Regression with large numbers of data points. .
o _ ~ state to a failed state [27]. Because we assume that we
Index Terms—Prediction, Gaussian process regression, do not know the output functiod or the hidden state
anomaly detection, Lorenz model, N Hs laser system, 10g- 1, e cannot rely on it to help us determine whether or
likelihood function, k-nearest neighbor, prognosis. .
not the observeg; is anomalous. The problem that we
address in this paper is to develop a method to discover
I. INTRODUCTION whether or not the current observed valyerepresents
This paper addresses the problem of making predigd anomaly based on the observed history of the system.
tions of future events on systems that can be described by>everal approaches have been discussed in the litera-
low-dimensional dynamical equations. We assume thiate to address the problem of making future predictions
we are given data from a data generating process that @hsystems that can be described by Equations 1, 2 and

be functionally described by the following equations: 3. Traditional approaches include those developed in the
system identification community [16]. Other techniques

hy = T(h;,) (1) include Hidden Markov Models, where the transitions
x; = W(x{_;,hi u) (2) between theM hidden discrete states are modeled as
e = Qxy) 3 @ first-order hidden Markov process [22]. The HMM

_ o allows for the dynamics of the system to be modeled but
We assume that the functiofi determining the evo- requires that a procedure (such as clustering or learning
lution of the hidden system state; is unknown. We vector quantization) be used to develop a discrete rep-
. . . . resentation of the system output. Other popular methods
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dwell time within a hidden state does not follow the is given by the Lyapunov time constant of the
exponential decay that arises from the standard HMM system, which can be derived from data or directly
algorithm. Dong and He [7][8] have recently developed from the governing equations of a system [6].

this method for analyzing systems with hidden discrete

transitions (as shown in Figure 1) using a hidden semi-« The N Hj3 laser data has been widely used in the
Markov model (HSMM) where the dwell time within a time series prediction community for over a decade
state is modeled by a Gaussian distribution. Their work to test machine learning algorithms for detection,
shows that the HSMM can lead to superior performance prediction, and model validation [39], [15].

on real-world applications compared with the standard

HMM formulation. Methods that are suitable for making predictions on
this system may be transferable to other systems. The
capability to predict time series that arise from nonlinear
chaotic systems could be useful in several other real-
world applications that exhibit chaotic behavior.
Fault detection systems make use of either passive
(o = ) or active sensing devices, connected in a discrete or
continuous fashion [5], [34], [35], [29]. These sensing
devices monitor one or more state variables depending
on the nature of the application. For some systems,
these measured state variables can be analogous to state
@ @ variables described by a set of differential equations. For
example, Yamanaka et. al.[37], [1], [36] presented a sim-
Fig. 1. This figure shows a finite state machine of the systetessta Pl€ analytical model to explain the interaction between
The finite state machine has a potential path for progressiom f crack planes using van der Waals inter-atomic force. This

normal operation (clear circles) to the failed state (solidle). The ;
model allows for the system to move from a failed state back tomab approach addressed the prOblem of detectlng a closed

operation which models intermittent problems that can ariseinplex  Crack in @ mechanical system using ultrasonic testing.
systems. For generality, we have included bi-directionsdves and a The paper proposed a new detection technique based on

fully connected graph. an analysis of the subharmonic components which are
generated due to the nonlinear interaction of the crack
surface and the forcing function. The authors showed that
I[l. MOTIVATION under certain parametric conditions the vibration signals
pt at represent the crack opening displacement can exhibit

©)

We demonstrate the detection and prognostic ca = behavi
bilities of our algorithm on the data from the Loren£n0tic be a\lllor. q d d h
model and the\V H; laser system because it is a suitable 700Nd €t al.[10] conducted a separate study to shown

test bed for building prognostic algorithms for severir'at the response of nonlinear dynamical systems can
reasons including: ave chaotic oscillation under fatigue crack growth. Most

hysical ph I high di ional
. The NH, laser system can be modeled by oy PNysical phenomenon are complex and high dimensiona

. X . . : _in nature which can make the modeling process diffi-
dimensional f:hffe_rentlal equanops, thus a”OW'nQ:ult. In some cases, it is possible to approximate the
for Fhe apphcathn of Takens Theorem fromhigh—dimensional system with low-dimensional dynam-
nonlinear : dynam|cs.. This  theorem — gives th‘Iecs which are informative and interpretable.
mathematical foundation for us to take past values

of the time series to predict future values.

I11. BACKGROUND

o The laser intensity can be approximated by A time series is a collection of observations repre-
the Lorenz equations which are known teented sequentially as a function of time. A significant
exhibit chaotic behavior for certain values of théody of work is to create mathematical models that
parameters which puts a bound on the long-terpredict the system behavior from a set of observations.
predictability of the intensity. Chaos theory tellsThe approach taken in the machine-learning community
us that short-term predictions may be possible fdras been to create potentially nonlinear statistical nodel
chaotic time series, but long-term predictions arthat learn a mapping from past states to future states
impossible The time horizon for such predictionswithout requiring extensive knowledge of the physical



system. In many cases, methods such as neural netwasksincertainties in modeling time series has been well
can produce high quality predictions [32]. documented by Draper [9].

The focus of the current study is on the analysis of In 1996, Neal [21] showed that Gaussian Process (GP)
time series obtained from a low-dimensional nonlinedpodels are equivalent to the neural networks with one
dynamical system that exhibits chaotic behavior. The obidden layer with an infinite number of hidden neurons.
jective is to develop a prognostic algorithm that modeRasmussen [23] introduced the empirical formulation
the system dynamics using past observations and fopf-Gaussian Processes in terms of probabilistic model
casts the future system behavior while providing a me#Sing Bayesian treatment. Mackay [19] and Seeger [26]
sure of uncertainty in the predictions. This measure §ktended this research to show the relationship of the
uncertainty can be interpreted as the model's confideng@ussian Process model to several other popular ma-
in the prediction. If the model's confidence reduces &hine learning techniques like generalized Radial Basis
a certain point, it could be indicative of an unexpectefiunctions (RBF), splines, and support vector machines.

forthcoming event, thus leading to a prognostic signal. Gaussian processes are fully specified by a mean func-
tion and covariance function. For zeros-mean process,

The idea to predict the future values of a time serie . .
as a linear combination of the preceding values w e latter plays the prime role to characterize the process.
first introduced by Yule [38] as the auto-regressiva® covariance function is equivalent to a Mercer kernel
: ; : unction that measures the similarity between two input
rocess (AR). A comprehensive literature review on . _ .
P (AR) P ints. In statistical terms, the kernel function calcedat

conventional technigues to select a model that cou ; .
covariance between the outputs corresponding to

. . e
be used to forecast the behavior of the time has be . . . :
errent inputs. The choice of the covariance function

provided in [32]. The authors provide insight on Iocali ically depends on the prior assumption on the smooth-
linear models, global autoregressive, moving averaghé/p y dep b b

and neural-networks based approaches such as the R d‘?éﬁs and continuity of the underlying function generated
apé/ a process. Mathematically, a covariance function is

Basis Function (RBF) based model. K-nearest neighbo Nid i it d tive definit !
a local average model is determined by taking aweighté’&I T 1L produces a honnegative detinite covariance
atrix for a given set of input points. Mackay [19]

sum of outputs for the: inputs that are near the quer ovided a detailed description on a wide variety of
vector. Using different numbers of nearest neighbors, fovio X P y
covariance functions.

is possible to find the optimal value éffor which the
RMSE iS minimized. |V MA|N IDEA

McNames [20] presented a new method of optimizing The main idea [40], [41] discussed in this paper
the model parameters in order to minimize the multis tg puild a predictive model that estimates given
step cross validation error. In previous work [20], théne history of past observations. Rather than creating a
author proposed the adoption of nearest trajectory mogqs,l,g|e “point-estimate” of;, we estimateP(y;|y;_,). In
for time-series prediction. This method searches thgis formulation, the mean of this quantity (obtained by
closest trajectory points in the reconstructed state spagsimputing the expected value) will produce an estimate
as opposed to nearest neighbors. A comparative Stugy the future value ofy, while the variance of this dis-
on different nonparametric methods including nearegipyution quantifies the uncertainty in the predictions. As
neighbors, RBF, and nearest trajectory methods to pkgat uncertainty changes with time, it can be indicative of
dict chaotic time series can be found in [15]. The idea tgn ynanticipated change in the data generating process.
obtain iterative time series predictions using a regressiqnjs change could be due to several issues, including
tree based approach has been addressed by Badel egnal-movement of the hidden statg from one state to
[2]. another.

Gaussian Process models have gained popularity inFor a true prognostic capability on low-dimensional
the machine learning community because many machiggstems, i.e., one where a forecast is made at a time
learning algorithms including neural networks, spline$orizon significantly far in the future compared to the
and other regression methods are special cases of Ganatural frequency of the system, we need the ability
sian Processes. These models are intended to pretlictmake long term predictions. Such predictions are
the probability distribution of a future observation asheoretically impossible for chaotic systems [6] if the
characterized by the mean and variance of a Gaussjamediction horizon is of the same order as the Lyapunov
distribution. The variance acts as a measure of tliene. The Lyapunov time is the amount of time that is
uncertainty associated with each model prediction aequired for a volume of phase space to expand to a size
future observations. A detailed review on various sourcésat completely covers the underlying dynamic attractor.
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literature [13]. These algorithms provide a benchmark
for comparison against the performance of the Gaussian
" Gaussian Process . . .
Y, Model p(yf|y;1) Process regression which has become popular in the
machine learning community over the last ten years.
Once these algorithms are appropriately trained, it is
possible to iteratively predicj steps ahead in time for
SaussEn EEeess any given test case. It should be noted that for a chaotic
Model with * i I i i i
R P(ymI 1137 time series _the forgcast qf steps in future is restricted
" iterated P(y . ) to a prediction horizon that can be calculated from the
1-1 predictions r‘yrfl i s .
Lyapunov exponent, if it is known. However to predict

within this limit, it is necessary to train the model so that
Fig. 2. The top panel in this figure shows a method for genagatirit 1€arns the underlying dynamics of the system from the
predictions r?f fc?v?e?”aa"n“eltﬁyév‘vyfa% ;ﬁigg tga;:)sistzrr;tzéom re-historical observations. The extraction of the dynamics
\?vrr?:rseloerl]ét-ratiitic sucr?as the mean output of the model is fedibu;:;k can be a(_:hleved through delay coordmate_embedf:h_ng.
the model to generate the next output. According to Taken’s theorem [4],[28] given a finite
set of scalar observations, it is possible to reconstrugt th
attractor in the phase space with an appropriate choice
There are at least two ways to make predictions aboaft time delay {) and embedding dimensio]. Given
an event in the future. One method is to make thetime series, of length M the delay vectors, with
prediction in such a way that the estima®éy;,.|y;_,) lengthM, = M —(D—1)r data points can take the form
for a fixed durationr in the future. Ifr is significantly as shown in Equation 4. Here the embedding dimension
longer than the natural period of the system as measuiedan integer number and the delay is a duration with
by the low frequency modes in the Fourier spectrum @nsecutive sample points i.er = [ x -, where f; is
the signal, such a model would make predictions thtte frequency at which the data has been sampled. Given
are fixed in time; it would only make predictions forz,, X serves as an input data matrix of siZe—1) x M,
those events that are exacttyunits in the future. The and thei* column of X represents a vector delayed by
second method is to generaterated predictionsvhich (i — 1)7, wherei < (D — 1). The corresponding output
rely on developing a model to estimaty;|y; ;) and is denoted byY, termed as the target vector as shown
then feeding the output of the model back into the inpuitp Equation 4.
thus producing an estimate &f(y;+1|u:, y;—_1), where
p is @& statistic (such as the mean) computed from the Kk_Nearest Neighbor
distribution computed at time [25], [30]. This form of

iterated prediction is depicted in Figure 2. The k-nearest neighbor algorithm uses all available

input dataX and associated output dajauntil time ¢
to produce a prediction af;, 1. Specifically, to estimate
P(y:ly;_1), given x; we identify the k& vectors in
We provide a brief overview of three algorithmshe data set that are closest to that vector in terms
that we use for estimatind®(y:|y;_,). The first two of the Euclidean distance. The mean of the outputs
algorithms, the k-nearest neighbor and the bagged nassociated with those vectors is used as an estimate of
ral network algorithms, have been developed for marfie expected value of the distributioR,p (P(y:|y;_1))
applications and have been widely discussed in tlaad the variance of the outputs is used to estimate

V. ALGORITHMS
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Varp(P(y:ly;_1)). This method does not attempt toadditive Gaussian noise, we have:
summarize the data in any way and simply uses a

_ T
simple ‘look-up’ table to estimate the parameters of fx) = x'w ™
the distribution. These estimates are based on heuristic y = f(x)+e
principles regarding the local distribution of data at en ~ N(0,02)

time ¢. . . .
where x is the test vector andv is a set of weights.

Assuming that we choose a prior distribution for the

weights as Gaussian with zero mean and covariance

matrix X,, and that the noise is Gaussian and inde-
The bagged neural network [3] model consists gfendent and identically distributed, with varianeg,

developingN feedforward multi-layer perceptrons usingve compute the posterior probability distribution of the

the available input and output data. Each model is madeights given the dataY,y):

by taking a sample of data (with replacement) from the

B. Bagged Neural Networks

1
data set(X’,)). If each network is labeled aS;(6;), P(w|X,y) = N(O*QAAX%AA) (8)
the overall estimate oEr(P(y:|y;_,)) is given by: "
N where A = L XXT + 571 In order to make a pre-
. diction, givena test inpuk, we compute the predictive
Ep(P = (X, 0;
P(Plyi-i)) ;Gl( i-6i) ©) distribution by averaging over the weightsand obtain:

The estimate of the variance in the prediction, and thus p((x)(x, X, y) = N( 1

: riance in —x'AT Xy, x"A7'%) (9)
the associated uncertainty is given by: n

N where A = U%XXT + E;l. Using the so-called 'ker-
Varp(P(ylyi_y)) = Z[Gi(é\,’i,Hi)—Ep(P(yt\yt*,l))}z nel trick’, we' obtain Gaussian Process Regression by
i=1 assuming that we have a mappidgx) that maps the

©6) original N dimensional data into a large, possibly infinite

;hls estimate ?fhth(; uncertainty s ﬁ functlor;] of Itlh%imensional space. Replacing the independent variable
eterogeneity of the data samples Int eeventthatall y yith jts transformed version leads to the following
samples are identical, the only variation in the eS“mat‘f')%sterior distribution:

will be due to variation in the initial starting point of
the optimization procedure. This method is related to
Ensemble Methods in machine learning and are widely P(f(B(%))|@(%),X,y)
used to estimate the mean and variance of the target 1
distribution [31]. N(

P(x)TA Xy, d(x)TA 0 (%)) (10)

P
Un
This implies that the posterior distribution (Equation

C. Gaussian Process Regression 10) is also Gaussian, with the predicted maé(r)i)
and variances(x) for a given test input(x). After

A Gaussian Process is a stochastic process such thabstituting the value oft and doing some simple matrix

each finite subset of variables in the process is Mykanipylations the predicted mean and variance, in the
tivariate Gaussian distributed [24]. In 1996, Neal [21§eature space, can be expressed as:

noted that if the weights and biases in a neural network

are drawn f_rom a G_au_ssian distribution_, th(—?-n as _the 1(X) = @(X)TEP@(X)[UZIJF@(X)Tgpq)(x)]‘ly

number of hidden units increases, the prior distribution (11)

over functions defined by such networks will converge

to a Gaussian Process. This important result led many

in the machine learning community to research Gaussians(x) = ®(%)7%,®(x) — ®(%)7%,®(x)[02 1]

Processgs and suppqrt vector mgch!neg. n @(X)sz@(x)]—1(I)(X)T2p(p()~() (12)
Following the notation and derivation in Rassmussen

and Williams [24], Gaussian Process Regression is aEquation 11 and 12 pose a significant computational

generalization of the standard linear regression modebmplexity in situations where the number of data points

We begin with a brief review of their Bayesian derivations large. One type of complexity is regarding the amount

of linear regression with the modé¢l(x) = x”w and an of time required to learn the hyperparameters used



while constructing the covariance function. The commomethod using V-formulation developed by Foster et. al
approach to addressing this issue is to estimate the vedttt][12]. In the proposed technique, the low rank ap-
of hyperparameters and the noise term by maximizingoximation of larger matrices is calculated using partial
the log-likelihood of the model parameters given th€holesky factorization. In Equation 11, thex n matrix

data. (®(x)",®(x)) can be approximated by V7, where
In this research we are using the RBF stationathe n x m matrix V' is constructed by partial Cholesky
covariance function given in Equation 13: decomposition (PCD). These algebraic operations can be
summarized as follows,
1 = (w; — )2
C(z,2')=01exp | —= Z M
2 P 9] T PCD T
B [@(x)" Zp@(X)|nxn = Vixm-Vinxn (16)
+ 62 + 030;; (13) 7 PCD T
) [(D(X) qu)(x)]pxn - V*me'vmxn (17)
where 0=[61,05,05,0/] is the vector of hyperparameters
of the covariance function. The parametérsand o, Equation 11 can be rewritten as,
control the overall scale in vertical and horizontal varia- s v T2 -1
Ax)=V*Vije  I+VV'] 'y (18)

tions respectively. Heré, is the bias term andsd;; is
the'noise term wher@; is the variance of the noise and This result leads to Lemma 1 from [11]:
d;; is the Kronecker delta function.
During the training of the Gaussian Process, these hy-
perparameters are optimized based on a random sampleeémma LV [0 I+ VVT]~! = [o2 1+ VTV]~IVT
from the input data set. Thus, the hyperparameters can
be optimized with anyn,. random points selected froma The V formulation takes advantage of the above
pool of n input points, wherg¢m,. < n). Asm. increases lemma to reconstruct both Equation 11 and 12. The
the computational complexity increases exponentially.details on the proof can be obtain in [11]. Using Lemma
A common way to estimate the vector of hyperpat, one can rewrite Equation 18 as,
rameterd is to maximize the log-likelihood by taking 1
its partial derivatives with respect # and performing p(x) =V onl +VV]
gradient-descent search. If the training covariance matri
K = 021 + ®(x)" £,®(x), the log-likelihood function
can be expressed as:

Vliy (19)

Equation 19 is the basis of the so-called V-
formulation. Instead of directly inverting thex n matrix
[021 + VVT], the algorithm addresses the inversion of
L(0) = 1 log | K| — }yTqu 7 }nlog(%) (14) ™ X m matrix [021 + VTV, using the partial Cholesky
2 2 2 factorization. For smallem, the regression algorithm
Now the derivative of L(#) with respect to each with V formulation is much faster and always numer-
hyperparametef; takes the form of: ically stable. Further details on the adopted approach
to approximate the Gaussian process calculation can be
OL(0) = ,lTr ace {KlaK} lyTKﬂ%K*ly obtained in the following literature [11][12].
00 2 2 06

04
(15)
Further details of the cost function and optimization
algorithm can be obtained in the following reference \/| | orenz DYNAMICS AND N H; LASER DATA
[19]. The algorithm for generating iterated predictions
using a Gaussian Process is given in Figure 3.

The algorithms described in the previous section were
) ] ] _ tested on a data set from aWH; laser, whose inten-
D. Gaussian Process Calculation using V-formulation sity profile exhibits buildups followed by a collapse.
The second factor which influences the computation@ihe exact time instances of these collapses are unpre-
time is the inversion ofo2/ + ®(x)" ©,®(x)] which dictable. Researchers have shown the connection of the
is ann x n matrix (Equation 11). As the number ofexperimentally measured electric field froMH; laser
data points grows, inverting a matrix of size leads system to that of the dynamics of Lorenz model [33].
to operations with complexityD(n?) which is unfea- The Lorenz equation, as proposed by Hankel [14], can
sible due to memory and processing limitations. Tapproximate the dynamical behavior of the optically
handle this issue, we have adopted the Gaussian progesspedN H3 single mode laser field. The equations for



Input: X (Input), t (target),C (Covariance Function)
Rpnae (Maximum rank)x (test input) andV.,
(Number of iterations).
Step 1: Randomly select a subsetf n input points
to train hyperparameters (whemne <n).
Step 2: Optimize hyperparameter vector
a) Initialize 6=[0,,62,03,07]
b) Compute covariance matri@ usingn
input points.
c) Compute low-rank approximation of
covariance matrix constructed in (b).
d) Construct log-arithmetic likelihood function.

e) Maximize cost function with respect to each

hyperparameter.

f) Obtain the optimized hyperparameter values

Step 3: Construct Model.
g) Redefine low-rank approximation of covar-

iance matrix using optimized hyperparamete

Step 4: Make Predictions
for k := 1 t0 Nyer
h) Compute covariance matrix between test
points and active set.
i) Redefine low-rank approximation of
covariance matrix constructed in (g).
j) Compute and Storé!” predictive mean
and variance.
k) Updatex with k*" predicted mean.
end
Output: i(%) (Predicted mean);(x) (variance)

Fig. 3. The lterative Gaussian Process Algorithm.

the Lorenz model can be expressed as follows:

uw=—c(u—v) (20)
0=—ulw—r)—wv (21)
w = uv — bw (22)

This set of differential equations describes a nonlinear

dynamical system. For specific values ®f b and r,

the evaluation of the state vectfw, v, w) gives rise to
the famous Lorenz attractor. Figure 4 shows a typic
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Fig. 4. This figure shows a three dimensional representaticheo
Lorenz attractor evolved with time. The integration time sie®.05
. second witho = 2, b = 0.25 andr = 15. Herew, v, w are the state

variables.

"Bulsation of the laser can be theoretically generated using

Lorenz model with the control parameters adjusted to
oc=2,b=0.25 andr = 15 (Figure 5).

For this study, we use data from an optically pumped
81.5 micronN H; FIR laser. The data consists of a time
series of 25,000 samples taken at a sampling rate of
12.5 MHz. The data is quantized using an 8-bit analog-
to-digital converter. The data has a signal-to-noise ratio
of 300. Further details of the measurement setup can
be found in the literature by tbner et al [14]. We
normalize the laser intensity to lie between 0 and 1 by
dividing each observed value by the maximum value of
255,

From here on, to avoid any confusion, we will label
the electric field fromV H; laser system asxperimental
data setand thew? obtained from Lorenz model as
simulation data setGiven these data sets, the challenge
is to build a model that can predict the behavior of the
laser system as far into the future as possible with a
measure of confidence.

VII. ANALYSIS

We have tested the algorithms discussed in this paper
gﬁing the data from Lorenz model and theH; laser

three dimensional representation of the Lorenz attractéXStem'

numerically simulated using a** order Runge-kutta )

integration scheme. The state variables and the contfbl Data Set Selection

parameters in the Lorenz equation are closely related tol) Experimental Data SetGiven the 25,000 laser

the physical quantities of the laser physics. The detailstensity measurements, we divided them into two con-
of these relationships and their interpretations can ltiguous groups for training and testing as described
found in [14]. Hibner showed that the square of théelow. The training data was comprised of the first 1200
state variable«) at each time instant is analogous to theamples in the data set. After training we run the model
electric field intensity field of théV H3 laser system. The against multiple test sets that were arbitrarily consedct
Lorenz-like chaotic patterns observed in the intensitguch that the test sets did not overlap with any subset



Figure 5 represents the time history of the training set

25
used in this analysis. For the simulated data the optimal
20 value of D andr was found to be 140 and 1 respectively,
using the same grid search approach described above.
>15 Thus, the input data formed a matrix of siz&9 x 1061
2 with a corresponding target vector of siz@61 x 1. The
210 simulation test set was constructed beginning at time step
1201 and will be referred as test S for the rest of the
50 paper.
% 200 400 _ 600 _ 800 1000 1200 30— Training
Sample points - - -Test

Fig. 5. This figure shows the history of the square of the statiable
(u) of the Lorenz model evolved with time. The integration timepste
is 0.05 second witlr = 2, b = 0.25 andr = 15.

200

Intensity
-
[
(@]

=
o

of the training data. For clarity, however, we show th
results of the algorithms on three test sets only. The
three cases will be referred to as test A, B, and
respectively. To fino_l the_ optimal valu_e of parameter 200 400 600 800 1000 1200 1400 1600
such as the embedding dimensibrand time-delay an Sample points (time axis)
eXha.'UStlve search was conduc;ted oyer a spgqlfled rar&%(.a& This figure shows the intensity of tdéH 3 laser as a function
of d'scretep a_nd 7 values. With a given training Set, of time for the training and test sets. The objective of thipesds to
each combination of> andr has been used to built thecreate algorithms that use the first 1200 points of training ddark
r) to predict the collapses in the laser intensity in thmaining
model and _the_reafter tested (.)n a separate test set, %points while providing a measure of confidence in the ptixti.
each complnatlon, the normalized mean square €ITOT fHat measure of confidence will be used as a prognostic signal.
the prediction was calculated for the same test set. Using
this technique, we were able to identify the valuelof
andr which minimize the normalized mean square errc 25

of the predictions. The grid search yield&d= 35 and s °0 ‘:;82;0
7 = 1. The normalized mean squared error for a set Al « 30%
predictions{g;}.._, is given by: 0° * 20%
| N y15 B . A 60%
NMSE = j—y)? 2 2
S NU%;@ y) @ .
. . . M Optimal rank
wherey; is the observed valug; is the predicted value, o A
andor is the standard deviation of the true values ove 0.5 . 3 8 ooo
all the N points in the test set. "§R8iag8800s0000s
Given the training data set, we used the time seri % 100 200 300 420 k5(‘)0 0 700 800
an

embedding methodology to generate a target vector ...

Shown n E.quatlon 4. Thu.s’ the input dat‘?‘ formed I§‘|g. 7. This figure shows the normalized mean squared error ®MS

matrix of size34 x 1166 with a corresponding target of the prediction as a function of the rank of the low-dimensicap-

vector of sizel166 x 1. Figure 6 shows a plot of the proximation to the kernel matrix used in Gaussian ProcesseRsigm.

laser’s intensity as a function of time for the trainianhe analysis was run for different percentage of input samplats
hat have been used to optimize the hyperparameters of theiaea

and test sets. function.

2) Simulation Data SetThe first 100 points of the

simulated data obtained from the Lorenz model were

discarded to remove transient effects. From the remai- Results

ing set of data points, the first 1200 points were used We tested each of the four algorithms on these data

for training purposes and the remaining kept for testingets:k-nearest neighborg{NN), bagged multilayer per-
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Fig. 8. The four plots of this figure show the iterative preigies (of four algorithms) overlapped on the true test data &sction of time.
Both GP and GP-V algorithms are both able to model the local frighuency oscillations and the collapse event accurafdiis is the same
test case corresponding to the simulation data.

. . TABLE |
ceptrons (B-MLP), Gaussian Process Regression (GP)yye tagLe sHOwS THE NORMALIZED MEAN SQUARED ERROR

and Gaussian Process Regression developed with the(MMSE) FOR THE GAUSSIAN PROCESS(GP), GAUSSIAN PROCESS
Formulation (GP-V). We arbitrarily choge= 30 for the WITH V FORMULATION (GP-V), THE BAGGED NEURAL NETWORK

. . (B:MLP) AND THE k-NEAREST NEIGHBOR ALGORITHMS FOR FOUR
k-nearest neighbors algorithm and averaged the output of, reerent TEST SETYA, B, C AND S). QUANTITIES IN BOLD

10 MLPs each with 10 hidden units for the bagged MLP DENOTE THE MINIMUM OBSERVEDNMSE.
algorithm. For the GP method, alll66 (experiment)
and 1061 (simulation) sample points of the input data Test GP GP-V._ B-MLP -NN

matrix were used to compute the covariance matrix. weh (1201-1500)  0.1669 0.0474 1.5675 1.1996
used a random sample 80% of the input data to learn B (2001-2220) 0.4873 0.1155 1.0431 1.2234
the model hyperparameters in Equation 13 for the GFC (3201-3570) 0.2377 0.8747 1.1001 1.0767
and GP-V algorithms. The gradient descent to find theS (1201-1550) 0.1622 0.1798 1.4627 1.2219
optimal set of hyperparamtefswas done using a scaled
conjugate gradient algorithm and with a maximuml of
function evaluations.

We compared the forecasts of the four algorithms
The GP-V algorithm has one additional parametetescribed in this paper (GP, GP-V, B-MUERNN) using

compared to the standard GP algorithm: we must choae four test sets (A, B, C and S). The results, shown in
the optimal rank of thel” matrix. In this study, the Table I indicate that the Gaussian Process methods (with
rank was chosen such that it minimized the NMSE oar without the low-rank approximation) produce superior
a hold-out data set that did not overlap with the tesesults compared to the other algorithms. For test cases
set. Figure 7 shows the plot of the NMSE (averagd and B, Gaussian process with V-formulation (GP-
of 10 runs) as a function of rank for th& H; laser V) emerges with a better score compared to standard
data set and this analysis was performed for differe@aussian Process (GP). In Figure 8, the true values
percentage of input data points that has been usedowerlapped with the predicted values (representeck py
optimize the hyperparameters of the covariance functiaf the four algorithms that have been used for test S.
(Equation 13). For both simulation and experimental daoth methods (GP and GP-V) modeled the local (rapid)
sets, the optimal ranks were estimatedl@stimes the oscillations as well as the global trend in the data. These
corresponding dimensioD — 1) of their input data methods also provided superior predictions regarding
matrix. For each test, the algorithms are initialized witkthe timing of the collapse in the laser intensity when
(D — 1) past values of the given test set, and then weompared tok-nearest neighbork(NN) and bagged
generate iterated predictions as described in Section Wultilayer perceptron (B-MLP). Figure 9 shows the



boxplot generated from NMSE values of the test set (tfie slower rate of growth in the cumulative error after
experimental data) for all the algorithms trained ovehe collapse. In the post-collapse region, the cumulative
100 randomly chosen data sets. The NMSE has beemor drastically increases. The occurrence of a collapse
calculated on a separate test set that did not overlapgent results in the loss of the GP and GP-V'’s prediction
with any subset of the data used for training. Froroapability.

Figure 9 it can be concluded that standard Gaussian
process (GP) and Gaussian process with V-formulatic
(GPV) completely outperformg&-nearest neighbork¢ —GP
NN) and bagged multilayer perceptron (B-MLP) on pre e
diction task. This is because the medians of the NMS o k=NN
of predictions for both standard Gaussian process a

Gaussian process with V-formulation are much smalls
compared tok-nearest neighbor and bagged multilaye
perceptron. Also it can be seen that the performanc
of standard Gaussian process and Gaussian process !
V-formulation are very comparable.
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15 Sample points (time axis)
—_ — Fig. 10. This figure shows the cumulative er@y as a function of
: ﬁ time for the four tested algorithms for the test data shown gufe 6.

The Gaussian Process and the Gaussian Process with V-Ftaomula
outperform the other models in terms of the cumulative erroe GF-

" *+ V algorithm has the best performance out of all the modelsdeJiee
% _ - vertical line shows the time of the collapse in the laser isitgn
0.5 ' , _ :
: Another measure which we used to determine the
: g performance of the algorithm is based on the estimated
L : - prediction horizon which is the amount of time that
I — L L . . .
0 GP GP-V B-MLP k=NN it takes for the cumulative error to exceed a certain

(arbitrary) threshold. The estimated prediction horizon

(in sample points) is shown in Table Il for each of
Fig. 9. This figure shows the boxplot representation of tts $et the tested algorithms. The GP and GP-V methods had
using all the four algorithms. The NMSE is calculated base30d 4 : . .
sample points of the test set. the pest prediction horizon, with the GP-V algorithm

showing the best overall performance across the four test

. - ts.
To compare the rate at which prediction errors ac®
cumulate, we computed the cumulative prediction error TABLE Il
using the following formula: THIS TABLE SHOWS THE TIME(IN SAMPLE POINTS) AT WHICH THE
CUMULATIVE ERROR C' EXCEEDS THE ARBITRARY THRESHOLD
k OF UNITY FOR EACH OF THE FOUR MODELS TESTED ON THE FOUR
Cr(k) = Z(y} —)? (24)  TEST DATA SETS THIS NUMBER IS INDICATIVE OF THE MODEL'S

PREDICTION HORIZON THE GAUSSIAN PROCESS WITH
. V-FORMULATION SHOWS THE BEST PERFORMANCE WITH THE
where the indeX can hold any value fromi to N and/N  LONGEST PREDICTION HORIZON THE NUMBERS IN BOLD INDICATE

is the total data points in the test set. In this formdla, THE BEST PERFORMING ALGORITHM FOR EACH TEST SET
e e e eTor il e Tosr P GRY Bwe
pL. Using oure, the comparative per © A (1201-1650) 274 346 122 119
of the four tested algorithms yielded an interesting result
. B (2001-2450) 184 209 144 115
Both the Gaussian Process methods (GP and GP-V)
. C (3201-3650) 312 313 235 160
showed significantly better performance than the bagged S (1201-1550) 342 341 94 241
MLP and thek-nearest neighbor approaches. Figure 10
shows the accumulated error as a function of time
for test set A. This plot also indicates that the GP-V The threshold to determine the prediction horizon
algorithm outperforms the GP algorithm as indicated hig dependent on the prognostic application. Since the

i=1
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cumulative error is a monotonically increasing function The prognostic signal is developed by placing a
of time, the threshold will only be exceeded once. threshold on the estimated variance. When that variance
crosses the threshold it is used to indicate that a collapse
will occur in the near future. The threshold value can
be used to control the false-positive and true-positive

—True observation

2 1f o GP-v rates. Figure 12 shows the true observations for test set
éo. coat7eate? J ------ A along with the prognostic signal. The lower panel of
- : }' the figure shows the prognostic signal generated by the
1200 1250 1300 ggg%lgé%?né“(g%gggg)1550 1600 1650 GP and GP-V algorithms for the test data sktlong
10 with the position of the true point of collapse. Note that
the prognostic signal is set to high, ahead of the actual

i

collapse event. Thus, the algorithm’s assessment of its
uncertainty increases as the collapse approaches. Once
800 1250 1300 1350 1400 1450 1860 1850 1600 1650 the estimated uncer.tainty crosses a prgset threshold, the
Sample points (time axis) output is set to “high” status, indicating a probable
collapse might occur.
F]ig. 11. The top panel of this figure shows the iterated ptedic  Table Ill shows the number of sample points by which
?h;huigia\lfngoig‘i'hispi‘emggﬁ”agfet;’:i‘rfl :‘tgg Lhyetﬁgtg’;‘mggceé SQOWﬁe prognosis signal leads the actual collapse point for
Notice that the uncertainty in the prediction increasesmdiically just the four test sets. For test sét both GP and GP-V flags
before the collapse. A thresholded version of this signaised for the warning at the same time instance but this may vary
prognostics. for other test cases as demonstrated in Table IlI.

=

Uncertainty

TABLE Ill
THE VALUES IN THE FOLLOWING INDICATES THE NUMBER OF
SAMPLE POINTS BY WHICH THE PROGNOSTIC SIGNAL LEADS THE
TRUE COLLAPSE POINT THE PROGNOSIS SIGNAL IS SET TO UNITY

% ONCE THE UNCERTAINTY ASSOCIATED WITH EACH PREDICTION
8 CROSSES A PREDEFINED THRESHOLD

0 1250 13;00 13;50 1400 1450 1500 1550 1600 1650 Test GP GP-v

Sample points (time axis) A (1201-1650) 24 24

. [---Prognosissignaicp | [[§ B[ B (2001-2450) 30 8
% —Prognosis signal GP—V C (3201'3650) 34 42
§ 0.5) x True collapse point S (1201-1550) 175 167
5

1250 1300 B o Pownts (e avigy >0 1600 1650 In spite of the superior performance over other ex-

isting methods, the applicability of standard Gaussian

Fig. 12. The top panel of this figure shows the observed teatataa Process (GP) for making predictions using large data

function of time. The lower panel shows a prognostic signaicviis  sets is limited by the computational complexity of the
developed by placing a threshold on the uncertainty of tleeliptions. algorithm

The GP and GP-V algorithms are both able to indicate the csdlap .
before the event actually occurs. This is the same test daséralted The V-formulation, developed by Foster et. al. can

in Figure 6. resolve the computational issues of the algorithm. Fig-
ure 13 represents the computational time involved in
Figure 11 shows the GP-V predictions for test dat@maining each algorithm with varying sizes of (training)
set A along with the associated prediction variance. Wiata sets. The k-NN algorithm shows to be the fastest
believe that the use of the variance signal for prognosticgnce it requires a match of one vector against the library
offers a better way to utilize these algorithms (GP anaf N data points. However, in most test cases, k-NN has
GP-V) since the variance signal is generated in addhe worst performance in prediction as shown in Table |
tion to the predictions of future observations. Also thiand Figure 9. Figure 13 also demonstrates the superior
signal is a measure of uncertainties associated with tbapability of GP-V in handling both time and memory
predictions. The figure shows that the GP-V algorithmequirements with increasingly large training sets. For
can model both the local variations in the data alontpe laser data, the GP-V formulation shows more than
with the collapse events. a 50% reduction in computation time for a data set
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more than an order of magnitude larger. The standamtbdel. This prediction horizon is tunable with a single
GP is unable to handle the memory requirement wherarameter and provides a consistent framework for com-
the number of training points exceeds a certain range paring predictive algorithms.
indicated in Figure 13. Figure 13 shows the us@3if00 The predictions made by the algorithms shown here
sample points for training and the remain2@)0 points generally correlate well with the original signal, with
for testing. On other data sets, our studies indicate thtae exception of the region near the collapse of the
GP-V can perform well on data sets with more than signal. Near the region of collapse, the Gaussian Process
million points. algorithm supersedes the other algorithms in terms of
prediction accuracy and length of the prediction horizon.
The Gaussian Process method provides a principled

200
approach to modeling uncertainty in predictions. This

= “error bar” is generated by the algorithm and is used

g 150 as a prognostic signal. These signals can be used to

> test prognostic capabilities for a variety of dynamical

émo systems.
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VIII. CONCLUSIONS

This paper has discussed methods to generate prog-

nostic signals for dynamical systems that can be dgi] M. Akino, T. Mihara and K. YamanakaFatigue crack closure
scribed using low dimensional differential equations. analysis using nonlinear ultrasoundgol. 700, Feb 2004, Proc.

The dynamical system studied exhibits low-dimensional Quantitative Nondestructive Evaluation AIP Conferenc256-
1263.

chaos and provides a good framework for studyingz) A.E.Badel, D.Guegan, L. Mercier and O. Mich€lomparison of
prognostic algorithms_ The paper demonstrates the use several methods to predict chaotic time serigsoustics, Speech,

; ; ; i4i~n.  and Signal Processing, IEEE(April 1997), 3793-3796.
of two standard algorithms for time series prediction: ., " Breiman, Bagging predictors Machine Learning24 (1996).

the k-nearest neighbor and neural network approach.” no. 2, 123-140.
We have discussed the novel application of Gaussia@l T. Buzug and G. PfisterDptimal delay time and embedding

Process Regression to prognostics and demonstrated its dimension for delay-time coordinates by analysis of thebglo
. . static and local dynamical behavior of strange attractoPhys.
superior performance. Furthermore, we have described Rev, A 45 (1992), 7073-7084.

the formulation and application of a novel Gaussian Profs] F. K. Chang,Built-in damage diagnostics for composite struc-

; _ tures vol. 5, Aug 1995, Tenth International Conference on
cess Regression method_ rec_ently developed _by other re Composite structures (IGCM-10), 283289
searchers and have applied it to the prognostics problef) p. cvitanovic, R. Artuso, R. Mainieri, G. Tanner, G. \tt

and provided a comparative study of the performance of N. Whelan and A. Wirzba,Chaos: Classical and quantym
various approaches. http://ChaosBook.org, 2007.

Th hod h d d K) M. Dong and D. He Hidden semi-markov model-based method-
e methods we have demonstrated can accurate ology for multi-sensor equipment health diagnosis and posis

predict the high frequency components of the signal European Journal of Operational Reseat@8 (2007), 858-878.
along with the trend of the signal. We have shown 48] M. Dong and D. He,A segmental hidden semi-markov model

| hod b d VZi h lati based diagnostics and prognostics framework and methggolo
novel metho ased on analyzing the cumulative error Mechanical Systems and Signal Processiig(2007), 2248-

signal to compute the prediction horizon for a prognostic  2266.
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